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POLICYFORUM

            D
evelopment of high-throughput 

genomic and postgenomic technolo-

gies has caused a change in approaches 

to data handling and processing ( 1). One bio-

logical sample might be used to generate many 

kinds of “big” data in parallel, such as genome 

sequence (genomics), patterns of gene and 

protein expression (transcriptomics and pro-

teomics), and metabolite concentrations and 

fl uxes (metabolomics). Extensive computer 

manipulations are required for even basic anal-

yses of such data; the challenges mount fur-

ther when two or more studies’ outputs must 

be compared or integrated.

Grassroots movements ( 2– 5), efforts includ-

ing the Science Commons, which is initiating 

an open-access data protocol ( 6), as well as top-

down (funder-led) efforts ( see table, page 235), 

have led to a range of policies for data manage-

ment and sharing. A recent European Science 

Foundation consultation exercise confi rmed a 

lack of explicit, well-documented data-sharing 

policies for most funding agencies in European 

countries ( 7). If we are to avoid squandering 

the immediate and extended value of big data, 

a focused strategy will be pivotal.

Early policies were driven by the need to 

manage long-term data sets (those accrued 

over 30 or more years), such as those in the 

social and environmental sciences. More 

recently, policies have emerged in response 

to increased funding for high-throughput 

approaches in major ’omics fi elds. The Euro-

pean Commission has invited the member 

states to develop policies to implement access, 

dissemination, and preservation for scientifi c 

knowledge and data ( 8).

Beyond public and private funding agen-

cies, regulatory agencies such as the U.S. Food 

and Drug Administration (FDA) ( 9), European 

Medicines Agency (EMEA) ( 10), and U.S. 

Environmental Protection Agency (EPA) ( 11) 

are also working to defi ne guidelines to facil-

itate electronic submission of traditional and 

’omics data types. These, as well as industry 

guidelines, are beyond the scope of this doc-

ument, but much could be learned from an 

exchange of ideas and practices ( 12).

The policies listed here share common prin-

ciples. They aim to protect cumulative data out-

puts. All recognize data as a public good and 

data sharing as a way to accelerate subsequent 

exploitation. On a practical level, all acknowl-

edge the right of fi rst use for data providers and 

the right to appropriate accreditation. Likewise, 

these policies have been generated through the 

same basic process (table S1) ( 13).

Despite these commonalities, there is still 

room for heterogeneity, as expected, given the 

different types of communities served by each 

funder and the data types they generate. Care 

must be taken, though, that these differences 

do not impede seamless interoperability. The 

path a funding agency takes in supporting its 

data policy largely refl ects the relative empha-

sis placed on managing versus sharing data. A 

focus on managing is often accompanied by 

an institutional infrastructure. Such centraliza-

tion provides economy of scale, institutional 

memory, and reusable capability, but it also 

incurs a substantial direct cost that may com-

pete with research funding ( 14). The UK Nat-

ural Environment Research Council (NERC) 

sustains a system of national data centers and 

has invested in the NERC Environmental Bio-

informatics Centre (NEBC) to cover ’omics 

data ( 15,  16). Similarly, the UK Economic 

and Social Research Council provides a cen-

tral data service for social scientists ( 17). Poli-

cies that focus on sharing tend to place more 

responsibility on researchers. For example, 

the UK Biotechnology and Biological Sci-

ences Research Council (BBSRC) is support-

ing its data-sharing policy through funds that 

allow researchers to develop their own solu-

tions from the bottom up.

Massive-scale raw data must be highly 

structured to be useful to downstream users. 

Standardized solutions are increasingly avail-

able for describing, formatting, submitting, 

and exchanging data ( 18,  19). These report-

ing standards include minimum informa-

tion checklists, ontologies, and fi le formats. 

Minimum information checklists are simple, 

structured documents that refl ect the consen-

sus view of a community on the information 

to report about particular kinds of biological 

studies or instrument-based assays. Ontolo-

gies provide terms needed to describe the 

minimal information requirements. File for-

mats defi ne a shared syntax to transmit and 

exchange standardized information.

There are now an escalating number of 

community-developed checklists, ontolo-

gies, and fi le-format projects, a positive sign 

of community engagement. But this prolifera-

tion brings with it new sociological and techno-

logical challenges—creating interoperability 

and avoiding unnecessary overlaps and dupli-

cation of efforts. These projects largely focus 

on a particular technology or a specifi c bio-

logical knowledge domain (e.g., ontologies for 

anatomy, gene functions, or the environment) 

and are by nature fragmented and not designed 

to be interoperable. A range of activities are 

fostering harmonization and consolidation of 

these standards for checklists ( 5), ontologies 

( 4), and representation of information in elec-

tronic formats ( 2,  3).

Many large coordinative initiatives ( 20– 23) 

are working to address the problem of archiving 

and integrating data. The ELIXIR project ( 22) 

aims to construct and operate a common, sus-

tainable bioinformatics research infrastructure 

to support the life sciences across Europe. The 

Infrastructure for Spatial Information in the 

European Community (INSPIRE) directive 

requires that Europe binds together its geo-

spatial data into portals ( 23). Widely useful 

are initiatives like the Digital Curation Cen-

tre (DCC), which tracks data standards, docu-

ments best practice, and has published a data 

life-cycle model to underpin long-term data-

preservation policies ( 24).

Achieving Adherence

Community adherence would be automatic if 

guidelines aligned with prevailing scientifi c 

culture and (emergent) practice. However, 

there is often a gulf or even outright resistance 

( 25,  26).

Policies that stipulate public data release, 

especially of prepublication data, raise 

researchers’ concerns about loss of intellectual 

ownership—for example, by compromising 
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Data sharing, and the good annotation

practices it depends on, must become part

of the fabric of daily research for researchers 

and funders.
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chances to publish, to commercialize aspects 

of funded work, or to collaborate with indus-

try. Public release of ’omics data has also been 

complicated by the increasing use of human 

subjects ( 27) in medical-related studies and 

the resulting ethical issues. Funding agencies 

must allay fears that data could be reused with-

out permission or due recognition by clarify-

ing the agency’s expectations. There is cur-

rently no large-scale infrastructure ready to 

support data citations, but interest in this issue 

is growing ( 28).

Researchers may be limited in their ability 

to comply by inadequate resourcing; time-inef-

fi cient data management at the local or com-

munity level; or a lack of tools, databases or 

informatics expertise. Researchers must now 

incorporate the cost of this type of essential 

work into research grants effectively and con-

sistently, and an expert pool of scientists with 

the requisite skills must be developed, as well 

as a community of biocurators ( 29,  30). Mech-

anisms for crediting data generators when their 

data sets are published or reused would help 

justify making the data public in the mind of 

the researcher, especially if funding decisions 

took into account prior good practice.

Collecting, holding, and disseminating 

electronic data are substantial undertakings, if 

considered at the global level. If policies are to 

be successful, information superhighway infra-

structure must be built. This must involve the 

creation and adoption of appropriate standards 

that enable electronic data to be shuttled around, 

tools for doing the actual task, and world-class 

database infrastructure to hold the collective 

submissions. Journals, for example, will only 

require compliance with reporting standards 

when appropriate standards-compliant soft-

ware tools and public repositories become 

available ( 31). An exemplar project already 

exists, the Investigation/Study/Assay (ISA) 

Infrastructure, which is developing standards 

to enable freely available tools that encompass 

several ’omics technologies and facilitate cura-

tion and reporting at the community level ( 3, 

 32). Lack of funding for these activities has 

already been highlighted ( 33,  34), and new 

ways of balancing streams of funding for the 

generation of novel data versus the protection 

of existing data must be found.

The Future

We recommend that a single, brief, high-level 

consensus guideline serve as a template for pol-

icy documents at the funder, community, and 

project levels. At its heart should be the public 

and timely release of data. It should be based 

on the principle that funders and the research 

community must work together to develop best 

practice. On enforcement of policy, we suggest 

that, in addition to mandating the inclusion 

of data-sharing plans in grant applications, 

deposition of supporting (or ideally, all) data 

in appropriate databases be the rule within a 

specifi ed time period in accordance with inter-

national standards. This would uphold and 

extend the model of “accession number for 

publication” that has worked well for DNA 

sequence data ( 27). “Appropriate” databases, 

by defi nition, should be secure, should be pub-

licly accessible, and ought to have a long-term 

funding horizon. This allows reviewers to focus 

on the science, while creating a simple way to 

check compliance via a URL. When funders 

do not have a suitable database or repository 

to endorse, they should attempt to fi nd or fund 

one ( 14).

We created the BioSharing Web site to cen-

tralize and to give a higher profi le to bioscience 

data policies and standards ( 35). It offers a focal 

point for stakeholders in data policy (i) by pro-

viding a “one-stop shop” for those seeking data 

policy documents and information (including 

information about the standards and technolo-

gies that support them) and (ii) by encourag-

ing exchange of ideas and policy components 

among funders, and between funders and 

potential fundees. For example, a recent post 

covers the “Toronto” ( 36) and “Rome” data-

sharing meetings ( 37) that aimed to build upon 

the highly infl uential Bermuda Principles ( 38) 

and the Fort Lauderdale report ( 39). Ideally, 

this hub could spark the formation of a Bio-

Sharing Consortium that would work at the 

global level to build essential linkages between 

funders and awardees and among the main 

research groups. 
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            F
or over a decade, genome sequences 

have adhered to only two standards that 

are relied on for purposes of sequence 

analysis by interested third parties ( 1,  2). 

However, ongoing developments in revolu-

tionary sequencing technologies have resulted 

in a redefi nition of traditional whole-genome 

sequencing that requires reevaluation of 

such standards. With commercially available 

454 pyrosequencing (followed by Illumina, 

SOLiD, and now Helicos), there has been an 

explosion of genomes sequenced under the 

moniker “draft”; however, these can be very 

poor quality genomes (due to inherent errors 

in the sequencing technologies, and the inabil-

ity of assembly programs to fully address these 

errors). Further, one can only infer that such 

draft genomes may be of poor quality by navi-

gating through the databases to fi nd the num-

ber and type of reads deposited in sequence 

trace repositories (and not all genomes have 

this available), or to identify the number of 

contigs or genome fragments deposited to the 

database. The diffi culty in assessing the qual-

ity of such deposited genomes has created 

some havoc for genome analysis pipelines and 

has contributed to many wasted hours. Expo-

nential leaps in raw sequencing capability and 

greatly reduced prices have further skewed the 

time- and cost-ratios of draft data generation 

versus the painstaking process of improving 

and fi nishing a genome. The result is an ever-

widening gap between drafted and fi nished 

genomes that only promises to continue ( see  

the fi gure, page 236); hence, there is an urgent 

need to distinguish good from poor data sets. 

The sequencing institutes and consortia 

whom we represent believe that a new set of 

standards is required for genome sequences. 

The following represents community-defi ned 

categories of standards that better refl ect the 

quality of the genome sequence, based on 

our understanding of the technologies, avail-

able assemblers, and efforts to improve upon 

drafted genomes. Due to the increasingly 

rapid pace of genomics, we avoided rigid 

numerical thresholds in our defi nitions to take 

into account products achieved by any com-

bination of technology, chemistry, assembler, 

or improvement and/or fi nishing process.

Standard Draft: minimally or unfiltered 

data, from any number of different sequencing 

platforms, that are assembled into contigs. This 

is the minimum standard for a submission to 

the public databases. Sequence of this quality 

will likely harbor many regions of poor qual-

ity and can be relatively incomplete. It may not 

always be possible to remove contaminating 

sequence data. Despite its shortcomings, Stan-

dard Draft is the least expensive to produce and 

still possesses useful information.

High-Quality Draft: overall coverage rep-

resenting at least 90% of the genome or tar-

get region. Efforts should be made to exclude 

contaminating sequences. This is still a draft 

assembly with little or no manual review of 

the product. Sequence errors and misassem-
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aid the research community in evaluating data.
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